Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.19.23290208

ABSTRACT

BackgroundAfter the first COVID-19 wave caused by the ancestral lineage, the pandemic has been fueled from the continuous emergence of new SARS-CoV-2 variants. Understanding key time-to-event periods for each emerging variant of concern is critical as it can provide insights into the future trajectory of the virus and help inform outbreak preparedness and response planning. Here, we aim to examine how the incubation period, serial interval, and generation time have changed from the ancestral SARS-CoV-2 lineage to different variants of concern. MethodsWe conducted a systematic review and meta-analysis that synthesized the estimates of incubation period, serial interval, and generation time (both realized and intrinsic) for the ancestral lineage, Alpha, Beta, and Omicron variants of SARS-CoV-2. ResultsOur study included 274 records obtained from 147 household studies, contact tracing studies or studies where epidemiological links were known. With each emerging variant, we found a progressive shortening of each of the analyzed key time-to-event periods. Specifically, we found that Omicron had the shortest pooled estimates for the incubation period (3.63 days, 95%CI: 3.25-4.02 days), serial interval (3.19 days, 95%CI: 2.95-3.43 days), and realized generation time (2.96 days, 95%CI: 2.54-3.38 days) whereas the ancestral lineage had the highest pooled estimates for each of them. We also observed shorter pooled estimates for the serial interval compared to the incubation period across the virus lineages. We found considerable heterogeneities (I2 > 80%) when pooling the estimates across different virus lineages, indicating potential unmeasured confounding from population factors (e.g., social behavior, deployed interventions). ConclusionOur study supports the importance of conducting contact tracing and epidemiological investigations to monitor changes in SARS-CoV-2 transmission patterns. Our findings highlight a progressive shortening of the incubation period, serial interval, and generation time, which can lead to epidemics that spread faster, with larger peak incidence, and harder to control. We also consistently found a shorter serial interval than incubation period, suggesting that a key feature of SARS-CoV-2 is the potential for pre-symptomatic transmission. These observations are instrumental to plan for future COVID-19 waves.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.12.23289890

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread had altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here we utilized passively recorded cellular signaling data at a spatial resolution of 1km x 1km for over 5 million users and epidemiological surveillance data collected during the SARS-CoV-2 Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups, and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30-59 years old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the its effect on the heterogenous spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19 and, more broadly, of respiratory pathogens.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL